Search results

Search for "field effect transistor" in Full Text gives 45 result(s) in Beilstein Journal of Nanotechnology.

Measurements of dichroic bow-tie antenna arrays with integrated cold-electron bolometers using YBCO oscillators

  • Leonid S. Revin,
  • Dmitry A. Pimanov,
  • Alexander V. Chiginev,
  • Anton V. Blagodatkin,
  • Viktor O. Zbrozhek,
  • Andrey V. Samartsev,
  • Anastasia N. Orlova,
  • Dmitry V. Masterov,
  • Alexey E. Parafin,
  • Victoria Yu. Safonova,
  • Anna V. Gordeeva,
  • Andrey L. Pankratov,
  • Leonid S. Kuzmin,
  • Anatolie S. Sidorenko,
  • Silvia Masi and
  • Paolo de Bernardis

Beilstein J. Nanotechnol. 2024, 15, 26–36, doi:10.3762/bjnano.15.3

Graphical Abstract
  • field-effect transistor (JFET) or SQUID readout. The principal advantage of these CEB-based detectors over TESs [19] is the effect of direct electron cooling, when electrons with high energy are removed from a nanoabsorber, leaving only the quasiparticles with low energy and, accordingly, low electron
PDF
Album
Full Research Paper
Published 04 Jan 2024

DNA aptamer selection and construction of an aptasensor based on graphene FETs for Zika virus NS1 protein detection

  • Nathalie B. F. Almeida,
  • Thiago A. S. L. Sousa,
  • Viviane C. F. Santos,
  • Camila M. S. Lacerda,
  • Thais G. Silva,
  • Rafaella F. Q. Grenfell,
  • Flavio Plentz and
  • Antero S. R. Andrade

Beilstein J. Nanotechnol. 2022, 13, 873–881, doi:10.3762/bjnano.13.78

Graphical Abstract
  • ZIKV NS1 compared to NS1 of DENV and YFV. Furthermore, graphene field-effect transistor devices functionalized with ZIKV60 exhibit an evident identification of NS1 protein diluted in human serum. These results point to the applicability of biosensors based on the ZIKV60 aptamer for the differential
  • . Following this concept, we functionalized multiple graphene field-effect transistor devices with ZIKV60 aptamers to demonstrate the feasibility of constructing graphene-based aptasensors for ZIKV NS1 protein detection. Importantly, these ZIKV60 aptamers feature a pyrene moiety for their direct
PDF
Album
Supp Info
Full Research Paper
Published 02 Sep 2022

Cryogenic low-noise amplifiers for measurements with superconducting detectors

  • Ilya L. Novikov,
  • Boris I. Ivanov,
  • Dmitri V. Ponomarev and
  • Aleksey G. Vostretsov

Beilstein J. Nanotechnol. 2020, 11, 1316–1320, doi:10.3762/bjnano.11.115

Graphical Abstract
  • low-frequency and low-noise amplifiers are commonly based on Si bipolar junction transistor (BJT) technology and junction field-effect transistor (JFET) technology. Since external interferences can be compensated by differential input circuits, differential amplifier designs are used for these
PDF
Album
Full Research Paper
Published 02 Sep 2020

Electrochemical nanostructuring of (111) oriented GaAs crystals: from porous structures to nanowires

  • Elena I. Monaico,
  • Eduard V. Monaico,
  • Veaceslav V. Ursaki,
  • Shashank Honnali,
  • Vitalie Postolache,
  • Karin Leistner,
  • Kornelius Nielsch and
  • Ion M. Tiginyanu

Beilstein J. Nanotechnol. 2020, 11, 966–975, doi:10.3762/bjnano.11.81

Graphical Abstract
  • our GaAs nanowire detector working in the photoconductor mode is by a factor of 1.5 better than the value obtained recently on molecular beam epitaxy (MBE)-grown Si-doped GaAs nanowires with a carrier concentration of 1.47 × 1017 cm−3, working in the field-effect transistor (FET) mode at similar
PDF
Album
Full Research Paper
Published 29 Jun 2020

Molecular architectonics of DNA for functional nanoarchitectures

  • Debasis Ghosh,
  • Lakshmi P. Datta and
  • Thimmaiah Govindaraju

Beilstein J. Nanotechnol. 2020, 11, 124–140, doi:10.3762/bjnano.11.11

Graphical Abstract
  • conductivity properties of the system, which was used for the dual-responsive detection of ultralow concentrations (subnanomolar level) of mercury. The BNAn–dTn coassembly material was used to fabricate a field-effect transistor (FET) for the detection of mercury (Figure 5c). Remarkably, both chiroptical and
PDF
Album
Review
Published 09 Jan 2020

Mobility of charge carriers in self-assembled monolayers

  • Zhihua Fu,
  • Tatjana Ladnorg,
  • Hartmut Gliemann,
  • Alexander Welle,
  • Asif Bashir,
  • Michael Rohwerder,
  • Qiang Zhang,
  • Björn Schüpbach,
  • Andreas Terfort and
  • Christof Wöll

Beilstein J. Nanotechnol. 2019, 10, 2449–2458, doi:10.3762/bjnano.10.235

Graphical Abstract
  • performance of field effect transistor devices using pentacene as organic semiconductor [33]. In that work, the increase in performance was attributed to the reduced sheet resistance for charge transport in the anthracenethiol monolayer supporting the pentacene multilayer. In order to study the I–V
PDF
Album
Supp Info
Full Research Paper
Published 11 Dec 2019

Review of advanced sensor devices employing nanoarchitectonics concepts

  • Katsuhiko Ariga,
  • Tatsuyuki Makita,
  • Masato Ito,
  • Taizo Mori,
  • Shun Watanabe and
  • Jun Takeya

Beilstein J. Nanotechnol. 2019, 10, 2014–2030, doi:10.3762/bjnano.10.198

Graphical Abstract
  • sensing of general external environments such as pH, humidity, pressure, and magnetic field is undoubtedly important. Spanu et al. reported sensitive pH sensors based on organic charge-modulated field-effect transistor structures with 6,13-bis(triisopropylsilylethynyl)pentacene [95]. The fabricated
  • sensors have a super-Nernstian sensitivity and reference-less nature. This organic charge-modulated field-effect transistor mechanism is attributed to the variation of the threshold voltage in the organic field-effect transistor induced by charge variation upon the presence of a charge (protonation, etc
  • to human life, medical, and health monitoring, the development of biosensors has received significant attention. For example, for the detection of bisphenol A, which is suspected as an endocrine disruptor, Piro et al. produced a nanoarchitectonic electrolyte-gated organic field-effect transistor with
PDF
Album
Review
Published 16 Oct 2019

First principles modeling of pure black phosphorus devices under pressure

  • Ximing Rong,
  • Zhizhou Yu,
  • Zewen Wu,
  • Junjun Li,
  • Bin Wang and
  • Yin Wang

Beilstein J. Nanotechnol. 2019, 10, 1943–1951, doi:10.3762/bjnano.10.190

Graphical Abstract
  • the use as field-effect transistor [1][25][26][27][28]. Different from the planar 2D materials, such as graphene and silicene, the puckered configuration of BP makes structural deformation much easier by tension or compression along any direction. Meanwhile, large-scale bandgap modulation accompanied
PDF
Album
Full Research Paper
Published 24 Sep 2019

Materials nanoarchitectonics at two-dimensional liquid interfaces

  • Katsuhiko Ariga,
  • Michio Matsumoto,
  • Taizo Mori and
  • Lok Kumar Shrestha

Beilstein J. Nanotechnol. 2019, 10, 1559–1587, doi:10.3762/bjnano.10.153

Graphical Abstract
  • )2, Ni3(HITP)2, is a conjugated MOF films of which were prepared by interfacial polymerization at the air–water interface. Wu et al. prepared a Ni3(HITP)2 MOF film and incorporated the resulting film into field-effect transistor (FET) devices, exhibiting p-type semiconductive behaviour
PDF
Album
Review
Published 30 Jul 2019

A carrier velocity model for electrical detection of gas molecules

  • Ali Hosseingholi Pourasl,
  • Sharifah Hafizah Syed Ariffin,
  • Mohammad Taghi Ahmadi,
  • Razali Ismail and
  • Niayesh Gharaei

Beilstein J. Nanotechnol. 2019, 10, 644–653, doi:10.3762/bjnano.10.64

Graphical Abstract
  • armchair graphene nanoribbon based field effect transistor (AGNR-FET) is used as the sensor platform. Modelling and Formalism In this study, AGNR as a 1D carbon material that contains a pair of atoms in the unit cell is incorporated with the assumption that for each carbon atom there is only one orbital
  • Atomistix Toolkit (ATK) is performed, which is based on density functional theory (DFT) and non-equilibrium Green's function formalism. The physical properties of the GNRs are dependent on the width and edge shape of the ribbons. Figure 3 illustrates the schematic of a field effect transistor using an 8
PDF
Album
Full Research Paper
Published 04 Mar 2019

Nanocomposite–parylene C thin films with high dielectric constant and low losses for future organic electronic devices

  • Marwa Mokni,
  • Gianluigi Maggioni,
  • Abdelkader Kahouli,
  • Sara M. Carturan,
  • Walter Raniero and
  • Alain Sylvestre

Beilstein J. Nanotechnol. 2019, 10, 428–441, doi:10.3762/bjnano.10.42

Graphical Abstract
  • with 3.8% Ag content. This study provides guidance for future NCPC materials for insulating gates in organic field-effect transistors (OFETs) and advanced electronic applications. Keywords: dielectric; nanocomposite polymer; organic field-effect transistor; parylene C; silver-containing nanoparticle
PDF
Album
Full Research Paper
Published 12 Feb 2019

Effects of post-lithography cleaning on the yield and performance of CVD graphene-based devices

  • Eduardo Nery Duarte de Araujo,
  • Thiago Alonso Stephan Lacerda de Sousa,
  • Luciano de Moura Guimarães and
  • Flavio Plentz

Beilstein J. Nanotechnol. 2019, 10, 349–355, doi:10.3762/bjnano.10.34

Graphical Abstract
  • . Experimental We made use of CVD graphene on top of a 300 nm thick SiO2 layer, which was purchased from Graphene Platform. The graphene devices were produced in the field-effect transistor configuration (GFET) in two photolithography steps (Figure 1). The first step was employed for defining the graphene device
PDF
Album
Full Research Paper
Published 05 Feb 2019

Electrical characterization of single nanometer-wide Si fins in dense arrays

  • Steven Folkersma,
  • Janusz Bogdanowicz,
  • Andreas Schulze,
  • Paola Favia,
  • Dirch H. Petersen,
  • Ole Hansen,
  • Henrik H. Henrichsen,
  • Peter F. Nielsen,
  • Lior Shiv and
  • Wilfried Vandervorst

Beilstein J. Nanotechnol. 2018, 9, 1863–1867, doi:10.3762/bjnano.9.178

Graphical Abstract
  • architectures such as the fin field-effect transistor (finFET) [1] has raised the need for measuring the electrical properties of nanometer-wide conducting features [2]. Recently, it has been shown that the micro four-point probe (μ4pp) technique, which is commonly used for sheet resistance measurements on
PDF
Album
Full Research Paper
Published 25 Jun 2018

The role of the Ge mole fraction in improving the performance of a nanoscale junctionless tunneling FET: concept and scaling capability

  • Hichem Ferhati,
  • Fayçal Djeffal and
  • Toufik Bentrcia

Beilstein J. Nanotechnol. 2018, 9, 1856–1862, doi:10.3762/bjnano.9.177

Graphical Abstract
  • Hichem Ferhati Faycal Djeffal Toufik Bentrcia LEA, Department of Electronics, University Mostefa Benboulaid-Batna 2, Batna 05000, Algeria LEPCM, University of Batna 1, Batna 05000, Algeria 10.3762/bjnano.9.177 Abstract In this paper, a new nanoscale double-gate junctionless tunneling field-effect
  • -effect transistor (JL TFET); nanoscale; SiGe; Introduction In the last years, the continuous miniaturization of nanoscale transistors induces new challenges including short-channel effects (SCEs) and high power consumption, which prevent incorporating conventional metal-oxide semiconductor field-effect
  • transistor (DG-JL TFET) based on a Si1−xGex/Si/Ge heterojunction (HJ) structure is proposed to achieve an improved electrical performance. The effect of introducing the Si1−xGex material at the source side on improving the subthreshold behavior of the DG-JL TFET and on suppressing ambipolar conduction is
PDF
Album
Full Research Paper
Published 22 Jun 2018

Know your full potential: Quantitative Kelvin probe force microscopy on nanoscale electrical devices

  • Amelie Axt,
  • Ilka M. Hermes,
  • Victor W. Bergmann,
  • Niklas Tausendpfund and
  • Stefan A. L. Weber

Beilstein J. Nanotechnol. 2018, 9, 1809–1819, doi:10.3762/bjnano.9.172

Graphical Abstract
  • mode; AM off resonance; AM second eigenmode; cross section; crosstalk; field effect transistor; FM-KPFM; frequency modulation heterodyne; frequency modulation sideband; quantitative Kelvin probe force microscopy; solar cells; Introduction In this study, we compare the most commonly used amplitude
PDF
Album
Supp Info
Full Research Paper
Published 15 Jun 2018

Free-radical gases on two-dimensional transition-metal disulfides (XS2, X = Mo/W): robust half-metallicity for efficient nitrogen oxide sensors

  • Chunmei Zhang,
  • Yalong Jiao,
  • Fengxian Ma,
  • Sri Kasi Matta,
  • Steven Bottle and
  • Aijun Du

Beilstein J. Nanotechnol. 2018, 9, 1641–1646, doi:10.3762/bjnano.9.156

Graphical Abstract
  • been confirmed to be a good candidate for fabricating field-effect transistor (FET) sensors for NO with high mobility at room temperature [17], and the detection offers a high sensitivity and rapid current response. However, the detailed mechanism regarding the interaction between the MoS2 surface and
PDF
Album
Supp Info
Full Research Paper
Published 05 Jun 2018

Structural model of silicene-like nanoribbons on a Pb-reconstructed Si(111) surface

  • Agnieszka Stępniak-Dybala and
  • Mariusz Krawiec

Beilstein J. Nanotechnol. 2017, 8, 1836–1843, doi:10.3762/bjnano.8.185

Graphical Abstract
  • controversially discussed, while the problem of the silicene formation on other substrates has been addressed only in a few reports. Nevertheless, the first silicene-based field effect transistor device operating at room temperature has already been demonstrated [12]. To get a deeper and more detailed insight
PDF
Album
Full Research Paper
Published 05 Sep 2017

Adsorption and diffusion characteristics of lithium on hydrogenated α- and β-silicene

  • Fadil Iyikanat,
  • Ali Kandemir,
  • Cihan Bacaksiz and
  • Hasan Sahin

Beilstein J. Nanotechnol. 2017, 8, 1742–1748, doi:10.3762/bjnano.8.175

Graphical Abstract
  • silicene. Lattice match and almost homogeneous interaction between Ag(111) and silicene support the formation of a honeycomb structure of silicene. Recently, a silicene field-effect transistor was successfully fabricated on Ag(111) with a measured room-temperature mobility of about 100 cm2·V−1·s−1 [25]. In
PDF
Album
Full Research Paper
Published 23 Aug 2017

Transport characteristics of a silicene nanoribbon on Ag(110)

  • Ryoichi Hiraoka,
  • Chun-Liang Lin,
  • Kotaro Nakamura,
  • Ryo Nagao,
  • Maki Kawai,
  • Ryuichi Arafune and
  • Noriaki Takagi

Beilstein J. Nanotechnol. 2017, 8, 1699–1704, doi:10.3762/bjnano.8.170

Graphical Abstract
  • silicene is to reduce the interfacial coupling. Recently, Tao et al. [24] successfully fabricated a silicene field effect transistor by peeling off the (2√3×2√3)R30° silicene from the Ag substrate and demonstrated the current–voltage characteristics supporting the survival of Dirac fermions. This study
  • broken, indicating the conductance of the SiNR is almost comparable to a metallic nanowire. The resistance of a silicene field effect transistor (FET) is estimated to be about 40 kΩ from the drain current measured as a function of the drain voltage [24]. The sheet resistance of multilayer silicene sheets
PDF
Album
Full Research Paper
Published 16 Aug 2017

Parylene C as a versatile dielectric material for organic field-effect transistors

  • Tomasz Marszalek,
  • Maciej Gazicki-Lipman and
  • Jacek Ulanski

Beilstein J. Nanotechnol. 2017, 8, 1532–1545, doi:10.3762/bjnano.8.155

Graphical Abstract
  • . Keywords: dielectric; encapsulation layer; flexible substrate; organic field effect transistor; Parylene C; Review Introduction An improvement of the performance of organic transistors by means of boosting charge-carrier mobility is one of the main quests in organic electronics, calling for novel design
  • is not only semiconductors that constitute crucial elements of organic field-effect transistor (OFET) architecture. The role of both interfaces, namely those of dielectric/semiconductor [5][6][7] and semiconductor/electrode [8][9] is widely discussed in the literature. In addition, elements such as
PDF
Album
Review
Published 28 Jul 2017

Light-induced magnetoresistance in solution-processed planar hybrid devices measured under ambient conditions

  • Sreetama Banerjee,
  • Daniel Bülz,
  • Danny Reuter,
  • Karla Hiller,
  • Dietrich R. T. Zahn and
  • Georgeta Salvan

Beilstein J. Nanotechnol. 2017, 8, 1502–1507, doi:10.3762/bjnano.8.150

Graphical Abstract
  • -TIE) having a channel length of ca. 100 nm fabricated in this work and, for comparison, commercially available pre-structured organic field-effect transistor (OFET) substrates with a channel length of 20 µm were used. The magnitude of the photocurrent as well as the magnetoresistance was found to be
  • working under ambient atmosphere. Schematic diagram of the experimental setup: (a) Commercial bottom-contact OFET substrates; (b) planar device structure with trench-isolated electrodes (HED-TIE). Light-switching behaviour of TIPS-pentacene-based (a) organic field-effect transistor (OFET) and (b) hybrid
PDF
Album
Supp Info
Letter
Published 21 Jul 2017

Growth, structure and stability of sputter-deposited MoS2 thin films

  • Reinhard Kaindl,
  • Bernhard C. Bayer,
  • Roland Resel,
  • Thomas Müller,
  • Viera Skakalova,
  • Gerlinde Habler,
  • Rainer Abart,
  • Alexey S. Cherevan,
  • Dominik Eder,
  • Maxime Blatter,
  • Fabian Fischer,
  • Jannik C. Meyer,
  • Dmitry K. Polyushkin and
  • Wolfgang Waldhauser

Beilstein J. Nanotechnol. 2017, 8, 1115–1126, doi:10.3762/bjnano.8.113

Graphical Abstract
  • found to have a direct bandgap of ≈1.8 eV [8]. Relatively high mechanical flexibility, good optical transmittance, high current on/off ratios in field effect transistor (FET) geometries and reasonably good field effect mobilities make atomically thin MoS2 layers a promising candidate for flexible and
  • TEM at 150 kV. EDX spectroscopy was performed in a Zeiss Supra 55VP SEM at 20 kV using an Oxford Instruments X-max detector and the INCA software for elemental composition quantification. Electrical measurements To investigate the conductivity of the MoS2 films two types of field effect transistor
PDF
Album
Full Research Paper
Published 22 May 2017

Ultrasmall magnetic field-effect and sign reversal in transistors based on donor/acceptor systems

  • Thomas Reichert and
  • Tobat P. I. Saragi

Beilstein J. Nanotechnol. 2017, 8, 1104–1114, doi:10.3762/bjnano.8.112

Graphical Abstract
  • the way towards efficient, multifunctional organic spin-devices. Experimental Bottom-contact field-effect transistor substrates were purchased from Fraunhofer IPMS (Dresden, Germany) with channel lengths (L) between 2.5 and 20 µm and channel width (W) of 10 mm. The isolation layer consists of 230 ± 10
  • for improving low-current measurements. All measurements were performed at room temperature (≈298 K). (a) Device layout of a bottom-contact organic field-effect transistor, showing n-Si as gate electrode, HMDS-treated SiO2 as gate dielectric, gold with ITO as source and drain electrodes and organic
PDF
Album
Supp Info
Full Research Paper
Published 19 May 2017

Advances in the fabrication of graphene transistors on flexible substrates

  • Gabriele Fisichella,
  • Stella Lo Verso,
  • Silvestra Di Marco,
  • Vincenzo Vinciguerra,
  • Emanuela Schilirò,
  • Salvatore Di Franco,
  • Raffaella Lo Nigro,
  • Fabrizio Roccaforte,
  • Amaia Zurutuza,
  • Alba Centeno,
  • Sebastiano Ravesi and
  • Filippo Giannazzo

Beilstein J. Nanotechnol. 2017, 8, 467–474, doi:10.3762/bjnano.8.50

Graphical Abstract
  • the final dielectric performance. Keywords: atomic layer deposition; chemical sensing; field effect transistor; flexible electronics; graphene; Introduction One of the new challenges in the field of electronics is represented by flexible devices. The evolution of the processing technologies for soft
PDF
Album
Full Research Paper
Published 20 Feb 2017

Impact of contact resistance on the electrical properties of MoS2 transistors at practical operating temperatures

  • Filippo Giannazzo,
  • Gabriele Fisichella,
  • Aurora Piazza,
  • Salvatore Di Franco,
  • Giuseppe Greco,
  • Simonpietro Agnello and
  • Fabrizio Roccaforte

Beilstein J. Nanotechnol. 2017, 8, 254–263, doi:10.3762/bjnano.8.28

Graphical Abstract
  • and optoelectronic devices. However, several issues need to be addressed to fully exploit its potential for field effect transistor (FET) applications. In this context, the contact resistance, RC, associated with the Schottky barrier between source/drain metals and MoS2 currently represents one of the
  • at the interface, it is worth comparing the experimental value with the one deduced from theoretical expression of the flat band voltage (VFB,id) of an ideal metal-oxide-semiconductor field effect transistor (i.e., without fixed or interface charges). VFB,id is expressed as [15]: where WM is the work
PDF
Album
Full Research Paper
Published 25 Jan 2017
Other Beilstein-Institut Open Science Activities